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A three-dimensional vortex method based on the discretization of the vorticity field into 
vortex vector elements of finite spherical cores is constructed for the simulation of inviscid 
incompressible flow. The velocity is obtained by summing the contribution of individual 
elements using the Biot-Savart law desingularized according to the vorticity cores. Vortex 
elements are transported in Lagrangian coordinates, and vorticity is redistribnted, when 
necessary, among larger number of elements arranged along its direction. The accuracy and 
convergence of the method are investigated by comparing numerical soIu?ions to analytical 
results on the propagation and stability of vortex rings. Accurate discretization of the initial 
vorticity field is shown to be essential for the prediction of the hnear growth of azimuthal 
instability waves on vortex rings. The unstable mode frequency, growth rate and shape are in 
agreement with analytical results. The late stages of evolution of the instability show the 
generation of small scales in the form of hair-pin vortex structures. The behavior of the 
turbulent vortex ring is in good qualitative agreement with experimental data. 0 1990 Academic 

Pms, inc. 

I. INTRODUCTION 

The subject sf this paper is the construction and validation of a ~agra~gia~~ 
grid-free vortex method for the simulation of 3-dimensional, unstea 
incompressible flow. In these flows, as exemplified by shear layers, jets, 
vorticity remains confined to a small fraction of the total volume of the 
experiencing rapid and large distortion. Kinematically, vorticity 
along particle paths while its magnitude is modified according to 
Moreover, if the vorticity field and boundary conditions are specifi 
held can be computed by direct integration. Thus, a complete simu 

be built on the tracking of the vorticity field in 
e facts make vortex methods in which the vorticity fi 

by a finite number of localized vortex elements particularly attr 
methods, accurate numerical simulation of complex non-linear Wows can be 
achieved at a limited computational effort. 

In a 3-dimensional flow, several forms of instability may arise seq~e~ti~Ily or 
simultaneously. As a result of these multiple instabilities, rapid and strong distor- 
tions of the flow map and the vorticity field are observed. The changes in t 
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vorticity field can pose serious challenges to computational methods that attempt to 
capture the late stages of development using grids of fixed coordinates. Moreover, 
the changes in the vorticity distribution are associated with the formation of length 
scales which are smaller than those that existed at early times by the action of the 
strain field in the direction of the vortex lines. This makes it necessary to employ 
a scheme of local grid refinement as time progresses. 

The desire to resolve small scale, streamwise structures in turbulent shear flows 
constitutes the motivation behind the task of constructing 3-dimensional vortex 
methods. While the ultimate goal of this work is the development of numerical 
solutions of the Navier-Stokes equations at high Reynolds number in complex 
geometry, we limit our attention in this paper to the construction and validation of 
a vortex method for the solution of the incompressible Euler equations in free 
space. The scheme is based on the discretization of the vorticity field into a number 
of vortex vector elements with finite point-symmetric cores and following the 
motion of these elements in Lagrangian coordinates. The vortex vector elements 
change their vorticity according to the local stretch, while their direction is deter- 
mined by the tilting of the material lines. The velocity is computed by summing 
over the fields of individual vortex elements which are evaluated from the 
desingularized Biot-Savart integral. 

The evolution of vortex rings in an inviscid flow is selected as a case study for 
the validation of the proposed vortex method. The choice of this problem was 
motivated by the following reason. There exist two different linear stability theories, 
based on a non-deforming core model and a more accurate deforming core model, 
indicating that a vortex ring is unstable to azimuthal bending waves around its 
perimeter [l-4]. Experimental data which support the results of the linear theory 
of the deforming core model are also available [S-9]. Another attractive feature of 
vortex rings at high Reynolds numbers lies in the fact that the finite-amplitude wave 
breaking of the azimuthal instability does not lead to a substantial increase in the 
size of the support of the vorticity field. Instead, the process leads to the formation 
of a turbulized vortex ring, a ring of approximately the same dimensions as the 
original ring but with a highly turbulent core [3]. The volume over which com- 
putational elements should be distributed is thus not expected to increase substan- 
tially under the action of the strain field. Meanwhile, the growth of the number of 
computational elements, if necessary, will be mainly due to vortex stretching. 

The paper is organized as follows. The formulation of the vortex method is 
described in Section II. The study of propagation and stability of vortex rings are 
tackled using two different physical models for their structure. In Section III, we 
use the thin tube model in which the core of the ring is assumed to be small and 
non-deformable. A more accurate model, where the dynamics of the flow within the 
core of the physical vortex are properly taken into account, is used in Section IV. 
Computations are performed for rings with different core-to-radius ratios and 
results of both models are compared to analytical expressions for the propagation 
velocity, to the predictions to the linear theory of vortex ring instability, and to 
experimental data. The simulations are then extended beyond the linear range of 
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growth of the azimuthal instability to study the formation of a turbulent vortex 
ring. In Section V, we present conclusions regarding the convergence of the SC 
and a discussion of the properties of vortex rings. 

II. FORMULATION AND NUMERICAL SCHEME 

11.1. Equations of Motion 

The motion of an incompressible, inviscid fluid is governed by the Euler equations: 

v.u=o (1) 

expressing the conservation of mass and momentum, respectively. In these equa- 
tions, x = (x, y, z) is the position vector, u = (u, v, W) is the velocity, t is time, 
V = (a/&, d/dy, a/&) is the gradient operator, and p is pressure. Variables are non- 
dimensionahzed with respect to the appropriate combination of a chara~te~~sti~ 
length, a characteristic velocity, and the density. The governing equations can 
rewritten in terms of the vorticity CO, defined as 

o=vxu (3) 
by taking the curl of Eq. (2). Using Eq. (I) and the fact that, by de~n~t~o~, the 
vorticity forms a solenoidal vector field, we obtain the vorticity trans 

Equation (4) indicates that the vorticity moves along a particle path while it 
is being tilted and stretched with the evolving strain field, V . This can be seen 
by comparing the vorticity transport equation with the equation governing t 
evolution of a differential material element 62: 

~6~+“.vc3~=d~. (5) 

This comparison yields the well-known Helmholtz theorem. 
If the vorticity distribution is known, the velocity can be evaluated from t 

integration of Eqs. ( 1) and (3 ). Based on the uniqueness of the de~~rnpo~~t~o~ of a 
vector field, the velocity can be split into two components 

u=u,+u,, (6) 

where u, is a solenoidal field and u, is a potential field. ~~rthe~ore~ we assu 
the existence of a vector stream function w satisfying: 

u,=vxyL m 
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By construction, u, satisfies the continuity equation since V . Vxtp vanishes identi- 
cally. Substituting Eq. (6) into Eq. (3) and assuming that w itself is divergence-free, 
we obtain 

v2y.l= -63. (8) 

The solution of this equation is given by 

v(x) = j G(x -x') 0(x') dx', (9) 

where x’ is the position of the volume element dx’, and 

G(x) = 1/4w (10) 

is the Green function of the Poisson equation in three dimensions, where r = 1x1. As 
shown by Batchelor [lo], the vector stream function tj given by the above expres- 
sion is solenoidal, as previously assumed, if the boundaries of the domain extend 
to infinity, where the velocity is assumed to decay to zero. Equation (6) states that 
the velocity can be written as the sum of a rotational component induced by the 
vorticity field in an unbounded space and a potential component required to satisfy 
the boundary conditions. For an unbounded domain with no interior boundaries, 
up vanishes identically. 

The velocity component u, can be evaluated from Eqs. (7) and (9), yielding the 
well-known Biot-Savart law, 

u(x)= j K(x-x')xo(x')&, (11) 

where 

K(x)= -i;. (12) 

Next, we show how to use Eqs. (4), (5), and (11) to construct a vortex scheme. 

11.2. Numerical Scheme 

The construction of the numerical method starts with the discretization of the 
initial vorticity field into a number of vortex vector elements, each with vorticity ebb, 
on a 3-dimensional mesh. The support of the initial vorticity is divided into volume 
elements d Vi, i = 1, 2, . . . . N, and the vorticity is written as 

w(x,O)= g o,(O)dV,f,(x-Xi), 
i=l 

(13) 

where Xi is the center of the volume element dl/, and oi is the vorticity associated 
with the element i. The vorticity associated with each element is smoothed in a 
small neighborhood of Xi according to a spherical core function f8 with a core 
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us 6. The core function fb is chosen to satisfy the conditions: (1) g^f6(x) 
fJ converges to the Dirac delta function 6( . ) in the sense of distributions as 

6 -+ 0; (2) the induced velocity field away from the core is the same as that induced 
by a concentrated vortex element, i.e., the core function decays at a fast rate; and 
(3) the velocity field of a finite vortex element is no~-si~~~~ar at its center. Let 

where f > 0 for r < 6 and vanishes rapidly for r > 6, so that 6 resents the radius 
of the sphere where most of the vorticity is concentrated. Note t iffb was chosen 
to be the Dirac delta function, Eq. (13) would represent the distribution of singular 
vortex elements. In what follows, a core function will always be used and 6 will be 
taken as a positive number larger than the distance between the centers of 
neighboring elements. The accuracy of the discretization in Eq. ( 13 f depends on: ( 
the ratio 6/h, where h is the distance between neighboring elements; (2) the choice 
of the core function, f6; and (3) the scheme used to determine of the values of 0,. 

From the analysis of the computational results, we found that best accuracy is 
obtained for values of 6 larger than the distance between neighboring elements. This 
last requirement, 6 > Fi, will ensure that the core functions associated with neighbor- 
ing e!ements are highly overlapping. This condition has been widely used in the 
analysis of the convergence properties of vortex algorithms [1 i-153, and it has 
been enforced in 2-dimensional vortex simulations to improve the accuracy of the 
results [ 16, 171. In the computations, this condition will be satisfied even when the 
use of cubic volume elements is not practical. In this case, dV= h,h,ll,, and G > h 
is replaced by 6 > max {h,, h,, h, >. 

The accuracy of the discretization also depends on the Image of the core func- 
J? The analysis of Beale and Majda [18] outlines a 
construction of core functions which satisfy the ab 
mes of arbitrary high spatial order. In this work, the third-or 

function 

is used. This core function, which was proposed by Leonard 6191, has been shown 
to yield a second-order discretization by Beale and 

The accuracy of the computation also depends on used to find w,(O). 
Three methods have been proposed: (1) using a point measure of the vor 

i(O) =o(Xj, 0); (2) using an average of the vorticity, ~~(0) dV, = s w(X, 0 
and (3) solving the system of linear equations resulting from the applicati 
Eq. (13) to the mesh points Xi, i= 1, 2, . ..) N. In the 2-dimensional version of the 
scheme, we found that the last algorithm yields the most accurat 
initial vorticity discretization and for the initial development of the 

581’86/1-6 
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in the following computations, we use the last scheme to distribute the initial 
vorticity among the vortex elements. 

Equation (13) remains unchanged if the quantity oj dVi is replaced by ri 6X,, 
where c?X,=(X,+~- Xi- 1 )/2 is a small material line segment in the direction of the 
local vorticity vector at Xi and ri is the circulation. This substitution becomes 
unambiguous if the centers of the vortex elements are carefully chosen to lie on the 
vortex lines of the initial vorticity field so that both ri and 6X, are well defined 
according to the initial vorticity distribution and if the index i increases incremen- 
tally in the direction of o. In this representation, 6X, is associated with a material 
line segment and Ti remains constant along a particle path, in accordance with 
Kelvin’s theorem. As a consequence of the Helmholtz theorem, derived by compar- 
ing Eqs. (3) and (4), the evolution of 6X,, which will be denoted by sxi(t), can be 
related to the vorticity wi 

Using Eq. (16), the vorticity distribution expressed by Eq. (13) evolves according 
to 

o(x9 t)= f ri&Xi(t)fi(x-Xi(t))* (17) 
i=l 

In this expression, xi(t) is the coordinate of the material particle initially at Xi 
so that x,(O) = Xi is the Lagrangian coordinate of this point, and 6xi(0) = 6X,. 
A vortex element is thus described by (r, x, Sx),. The evolution of the material 
line element, and the vortex vector element, 6xi is governed by Eq. (5). Since xi is 
the position of a material particle and 6xi is the material line, their evolution is 
governed, respectively, by 

&=6Xi-Vu(~&), 1). 

The solution of Eq. (4) is thus replaced by Eq. (17) and the solutions of Eqs. (18) 
and (19). 

The velocity field u in Eqs. (18) and (19) can be obtained by substituting 
Eq. (17) into Eq. (11) and performing the integration. The result of the integration, 
which represents a discrete desingularized version of the Biot-Savart law, Eq. (1 l), 
is given by 

(20) 



NUMERICAL STUDY OF 3D VORTEX METHOD 1 

where FC(T) = 47~ jkf( ‘) Y Y’* dr’ and ri = Ix - xi /. For the core function given in 
Eq. (15), the corresponding expression of JC is 

It(r) = 1 ---em’). (21) 

Using a first-order time integration of Eqs. (18) and (19), the vortex element 
center, xi, and the vortex vector, 6xi, can be approximate 

Xi(t+Vt)=Xj(t)+u(Xj(t), t)Vt WI 

and 

6xi(t +Vt) = &$(t) + 6Xi (t) ‘Vo(&(t), t) Vt. (23) 

The velocity gradient Vu, can be evaluated a~a~yti~~I1~ by differentiating the 
velocity expression in Eq. (19), as proposed by Anderson an 
Mowever, in order to reduce the computational effort, the foIlowi~g approach is 
adopted. The velocity gradient along the vorticity vector can be approximated by 

~~bstit~ti~g Eq. (24) into Eq. (23) and using Eq. (22), we get 

6X,(r+Vt)=Xi+i(t+Vt)-Xi-!(t+Vt~ 
I 

2 

This approach explicitly enforces the solenoidality 
filament scheme of Leonard [19,21] and 
Chorin [22-241 employ similar, but not identical devices to account for the change 
of vorticity as material lines are strained. In our com~~tati~~s, a second-order time 
integration is used to move the points xi: 

and 

As mentioned before, this scheme implicitly enforces the ~o~~eetivity of t 
lines. It, thus, ensures that the vorticity field remains solenoidal irrespecti 
accurate are the time integration or discretization of the vo 
tion (17) implies that V.o=0(16~1*), since the integral over t 
is replaced by a finite sum. 

As the flow develops strong stretch along the vortex lines, the value of 
the amount of vorticity carried by each vortex element 
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maintain a uniform resolution, a vortex element is split into two element each with 
6~ =6xi/2 and r=r,, whenever the magnitude of lSxil exceeds 2/z,,,. This 
amounts to redistributing the vorticity field among a larger number of elements to 
prevent the deterioration of the accuracy of the discretization as the distance 
between neighboring elements increases due to the strain field. 

To study the accuracy and convergence of this scheme, we compute the propaga- 
tion and the linear stability of a vortex ring using two models: the thin tube model 
and the vortex torus model. Results of each model are compared with the corre- 
sponding linear theory of stability. We continue the computations beyond the linear 
range to illustrate the dynamics of the vorticity field at the later stages of develop- 
ment of the flow. 

III. RESULTS FOR THE THIN TUBE MODEL 

This is a simplified model of a vortex ring. In this model, the cross section of the 
ring, with core radius (T, is represented by one vortex element with core 
radius 6 = 0. This “thin tube” model, while resembling the thin filament approxima- 
tion proposed by Leonard [19], differs by the following. In the filament 
approximation, the core maintains its vorticity distribution as the filament is defor- 
med. In the thin tube model, the relative motion of neighboring elements can affect 
the local vorticity distribution within the tube. Although this is not expected to cure 
the limitations of the thin vortex ring approximation, especially in determining the 
stability behavior of the vortex ring, we start with this case for its simplicity and 
computational efficiency. The model is used as a test case to examine the effect of 
the vortex element length, h, and the time step, At, on the accuracy of the computa- 
tions. 

111.1. Self-Induced Velocity 

The physical ring, of radius R, is divided along its axis into N vortex elements, 
each of length h = SXi = 2nR/N, i = 1,2, . . . . N. To ensure overlap between neighbor- 
ing elements, we use 6 > h so that the vorticity within the core can be accurately 
discretized by the vortex elements. The vorticity distribution across the section of 
the ring, Q(X), is best approximated by a second-order Gaussian distribution with 
a standard deviation g. Equation (20) is used to evaluate the self-induced velocity, 
V, by summing the contribution of the elements around the ring. Results are com- 
pared with the analytical expression of Saffman [25] for a thin vortex ring: 
F= In(8R/o) - C, where P= 4nRV/T is the normalized velocity and C is a constant 
which depends on the vorticity distribution within the core. For a second-order 
Gaussian distribution C = 0.558 and 0 is the standard deviation of the Gaussian 
curve. 

A comparison between the computed value of v, using different values of N, and 
the analytical value is shown in Fig. 1 for o/R = 0.1, 0.2, and 0.3. The results 
indicate that strong overlap between neighboring vortex elements, 6 - 2h, is 
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0 20 40 60 80 i00 i20 140 

N 

“IG. 1. Normalized self-induced velocity of the ring, P= V/(R/4nR), vs. the number of vortex 
elements around the perimeter, N. The analytical results of SaKman 1251 are represented by straight 
lines. B/R = 0.1 + o; CT/R = 0.2 + + ; DJR = 0.3 + u. 

necessary for the accurate prediction of f? It also shows that, as the ring beco 
thinner, more elements are required to achieve accurate dis~rgt~zat~o~, i.e., iV grows 

10 increases. Therefore, for a fixed core size, the number of elements required 
ccurate discretization grows with the curvature of the ring. The computed s 

induced ring velocities are in good agreement with the values evaluated fro 
analytical expression for thin rings, while they are so 
This is expected since the analytical expression was 
that olR < 1.0. 

III.2 Stability of a Thin Ring 

A more interesting problem, which provides a test for the accuracy of the time- 
dependent calculations, is the growth of small perturbatio on the vortex ring 
There exists a rigorous linear theory for the stability of vor rings in two forms: 
(1) for a ring with a non-deformable core, performed by Widnall and Sullivan [I ]; 
and (2) a more elaborate theory where the dynamics o e flow within the and 
its deformation are taken into account, reported in dnall et al. [2J9 nail 
[26], and Widnall and Tsai [3]. The first analysis assumes that variations along 

the vortex ring can be neglected and is only valid when the wavelength of the 
perturbations is much larger than the core size. In the latter, the pert~~b~tio~~ 
within the core of vorticity is represented in term of “radial modes” of the linear 
stability problem. In both studies, it is found that the ring is unstable if the waves 
have no self-induced rotation. This condition can only be examined for the first 
radial mode in the earlier study, where the theory spuriously predicts the instability 
outside its range ‘of validity. The more detailed analysis reveals that while the first 
radial mode may not satisfy the zero rotation condition, the latter is satihed at fixed 
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wavenumber to core radius ratios for the higher radial modes. In practice, the 
azimuthal instability of the second radial mode of bending, which has the higher 
growth rate, is observed. The results of the current thin tube model will be com- 
pared to the predictions of the first analysis. In Section IV, the results of the vortex 
torus calculations, in which a number of elements are used to represent the ring 
cross section, will be compared with the theory of the deformable core. 

To study the linear stability of thin rings using the thin tube model, a radial per- 
turbation, with amplitude E = 0.02R and wavenumber n, is imposed on the axis of 
the vortex ring. The wavenumber is the number of waves that are fitted along the 
entire length of the ring axis. The size of the perturbation varies in the azimuthal 
direction as dp = E sin(n0), where p denotes the radial direction in the plane of the 
ring and 8 is the azimuthal angle. At t = 0, the ring lies in the x-y plane, the 
z-direction being the streamwise direction, and the vortex elements are displaced so 
that p = R + dp. We start with n = 1 and increase the wavenumber by an increment 
of one. The time step used is At =O.lO and the selected value of circulation is 
r= 2.0. Results are obtained for rings with o/R = 0.10,0.15,0.20, and 0.25 and are 
analyzed in terms of the growth of the perturbation in the radial and streamwise 
directions. In the following, only the case of o/R = 0.1 is discussed in detail. 

For IZ <n,, where n, is the wavenumber of the neutrally stable mode, the ring 
spins around its unperturbed axis at a frequency 1, that depends on the value of n. 
The motion described by any point on the ring, with respect to the unperturbed 
axis of the ring, is that of an ellipse whose major axis is in the radial direction and 
the minor axis is in the streamwise direction (if the perturbed ring is opened to 
form a rectilinear vortex, it will resemble a corkscrew spinning at a frequency 1, 
and, hence, these bending waves are also called helical waves). The sense of rotation 
of the ring is the same as that of the ring vorticity. The frequency of rotation, A,, 
starts low at small n, grows to a maximum and then decreases again as IZ moves 
towards ~1,. The amplitudes in the p-direction and z-direction are shown in Fig. 2 
for n = 2, 5,8, and 12. The figure shows that the radial perturbation produces a 
streamwise perturbation of almost the same magnitude. These modes are charac- 
terized as being linearly stable since their amplitudes remain bounded. 

At n = n,, the wave neither grows nor rotates. For c/R = 0.1, and n, = 13 the ring 
remains in its original plane without bending, as depicted in Fig. 3. For the next 
mode, n* = 14, the wave grows in the radial direction and then in the streamwise 
direction so that the total amplitude grows exponentially in time, i.e., the ring 
becomes linearly unstable, as shown in Fig. 4. Moreover, wave rotation is not 
observed. At higher values of n, n > n *, the ring is stabilized again and the eigen- 
functions behave in a similar way to those corresponding to n <n,, with the excep- 
tion that the major axis of the ellipse is now in the streamwise direction and the 
sense of rotation of the wave is reversed. The wave amplitudes in the p and 
z-directions are shown in Fig. 5 for n = 15 and 19. 

Similar observations are made for rings with o/R = 0.15,0.20, and 0.25. In all 
cases, the unstable mode n* is a bifurcation in the eigenfunction that corresponds 
to /2,=0. In Fig. 6, A,, normalized with respect to T/R’, is plotted against the 
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FIG. 2. Evolution of the amplitude of the perturbation in the radial p - and streamwise z-direction 
for a vortex ring with CT/R = 0.1, computed using the thin tube approximation. Both amplitudes are nor- 
malized with respect to the initial perturbation, E/R = 0.02, and time is normalized with respect to P/T. 
The wavenumber N = 2,5,8, and 12 as indicated. 
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0 2 4 6 8 !0 

TIME (NW - 131 

FIG. 3. Amplitude of the perturbation for the ring of Fig. 2 and n = n,, = 13. 
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FIG. 4. Amplitude of the perturbation for the ring of Fig. 2 excited at the unstable wavenumber 
n* = 14. 
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TIME NJ - 191 

FIG. 5. Amplitude of the perturbation for the ring of Fig. 2 perturbed at n = 15 and 19 arranged 
from the top. 
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FIG. 6. Frequency of rotation I.‘, normalized with respect to R’/R, vs. non-dimensional w~venum 
ber K, defined as K= mfR: o/R = 0.1 --f u; oJR = 0.15 -+ *; g/R = 0.2 -+ v ; a/R = 0.25 -+ (diamond). 

non-dimensional wavenumber defined as K = ode 
K* = n* o/R - 1.25 corresponds to a non-rotating mo = 0, for all the values of 
a/R. This is in agreement with the analytical results o nail and Wlivan [ 11 for 
the stability of rings with non-deformable cores. y observed that a mode 

omes unstable when the self-induced rotation of the wave balances the rotation 
, and the energy of the perturbation is expended in stretchi 

to check on the accuracy of the computations, we varied the discretiza- 
eter h by using more elements around the ring axis. Figure ‘i s 

2.5 I I I 

1.0 ’ I I / I 

0 2 4 6 8 10 12 14 16 

TIME 

FIG. 7. The growth of the natural logarithm of the unstable mode amplitude, n* = 7$ for the ririg 
with a/R = 0.2, computed using N= 3tS140 with increments of 10. 
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growth of the amplitude of the perturbation a,=J’m, computed using 
an increasing number of elements for the unstable mode of a ring with 
a/R = 0.2, IZ* = 7. Although N = 30 is the smallest number of elements required to 
satisfy the condition 6 > h, we notice that N = 90 is necessary to compute the 
growth rate accurately. This is the same number of elements required for the 
accurate prediction of the self-induced velocity of the unperturbed ring, P= 3.1309, 
as seen in Fig. 2. Using this value of N was also necessary for the discrete vorticity 
field, Q(X), to become independent of N. This is not surprising since the stability 
of the wave depends strongly on the velocity and strain field induced by the ring 
on the perturbation. The growth rate a,, defined as CI, = d(log a,)/& is computed 
from Fig. 7 as 0.162. The analytical value of CI, for the same value of P is 
cc, =0.157 [l]. 

The effect of the time step, dt, on the computed results is studied in a similar 
way. Figure 8 shows the growth of the wave amplitude for o/R = 0.2, using N = 100, 
employing decreasing values of dt. For dt < 1.0, the computations are almost insen- 
sitive to the choice of At. Results diverge for At > 1.0, showing an accelerated 
growth of the perturbation accompanied with a high rate of stretch along the ring. 
For the other cases of a/R, the computations were repeated using At =0.05 but 
yielded no appreciable change in the results. In the following computations, we use 
At = 0.10 for rings having the same value of circulation. 

In Fig. 9, we plot the critical wave number n* against the self-induced 
velocity v, used to characterize the ring, for the four cases of o/R. We have 
reproduced on the same figure the analytical results of Widnall nd Sullivan [ 1 ] for 
the non-deformable core model and their experimental results. The results agree 
well with the results of the stability theory of vortex rings with non-deformable 
cores. The model, as expected, is unable to describe the stability characteristics of 

4.0 I I I 

3.0 

2.5 
2 
g 2.0 
J 

1.5 

0.5 

0.0 

FIG. 8. The growth of the unstable wavenumber for the ring of Fig. 7 using At = 2.0, 1.0, 0.5, 0.4, 
0.3, 0.2, and 0.1, all using N= 100. 
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 

FIG. 9. The computed wavenumber of the most unstable mode n* (A) vs. the normalized self- 
induced velocity, v, compared with the analytical (0) and experimental (x) results of Widnall and 
Sullivan [ 11. 

a vortex ring with a deformable core. The computed results are, however, closer to 
the experimental data than those obtained by the long wave stability analysis. This 
seems to support earlier speculation that the use of vortex elements allows small 
first-order deformation in the vorticity core of the ring which causes the competed 
results to behave slightly better than those of the corresponding linear theory. 

111.3. Shape of Instability 

The growth of the perturbation is now examined by observing the def~r~~ti~~ 
it develops along the vortex ring, i.e., the eigenfunction of the instability. Figure IO 

epicts two views of the vortex elements, connected along the direction of vorticity, 
for a ring with o/R = 0.25, at t = 140, 180,210, and 230. The ring is initial1 
turbed at n* = 6 with E/R =0.02. According to the results, the evolution 
instability can be divided into three stages. In the linear stage, t < 140, the per 
tion grows as a standing wave, as predicted by the hnear theory and verified by the 
analysis of the numerical results in the previous section. The growth of the number 
of vortex elements, and concomitantly the vorticity, is negligibly small. 

In the non-linear stage, 140 < t < 190, the amplitude of the instabili 
to grow, but the condition of zero rotation is no longer satisfied. 
growth, the peaks of the waves extend radially outwards, while they a 
in the direction opposite to the direction of propagation of the ri 
su.ffer a strong stretch that sends them away from the original 
generating nter-rotating vortex rods, or hairpin vortices. In t 
valleys of wave rotate slowly, forming flat connctions 
hairpins. 

At the later stages, t > 190, violent stretching of the hair 
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FIG. 10. The form of the vortex ring with o/R = 0.25 excited at the unstable wavenumber n* = 6. The 
plots are obtained by projecting the ring on planes parallel and normal to its direction of propagation 
at t = 140, 180,210, and 230, respectively, arranged from the top. 
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exponential growth of the total arc length of the ring, is observed. ~Iowever, the 
outward-reaching, inverted U-shaped vortices, the hairpin vortices, do not continue 
to move outwards. Instead, they fold backwards, stretching towards the original 
axis of the ring. In the meantime, the number of ele nts used to discretize the ring 
continues to increase, growing from N= 90 at 1 to N= 802 at t = 230. This 
catastrophic growth of the number of elements forced us to stop the co 
at this time. Similar exponential growth of vorticity has been observed before in 
models that employ thin filament approximations of vorticity structures, e.g., 
1127, 28-j. 

As has been shown before, the thin tube model does not allow enough 
within the core of vorticity to capture higher order radial bending modes t 
port the short wave instability observed experimentally. To overcom 
tion, a more detailed description of the ring in which e core vorticity 
into a number of vortex elements with 6 < cr, is us in Section IV. 
model the vortex torus 

IV. RESULTS FOR THE VQRTEX TORUS 

This is a more elaborate model of a vortex ring. The terminology is motivate 
e physical ring is discretized. The core of the vortex ring is represente 

by several vortex elements whose cores are smaller than that of the enclosing torus, 
6 < B. The vortex ring is thus modeled by a number of thin vortex tubes a~ra~~e~ 
within its core, forming a vortex torus. Note that we still call the physical object a 
ring, while the model is labelled as torus. The motion of the elememts th~o~~h~~t 
the cross section of the torus allows substantial deformation of its core at different 
radial and azimuthal stations. Therefore, higher order radial modes associated 
with the instability of vortex rings, as observed in the linear stability analysis, 
expected to be properly simulated. The larger the number of elements arran 
in the radial direction within the torus core, the higher the order of t 
instability which can be captured by the simulations. 

V.1. Discretkation of the Vorticity Core 

vorticity of the vortex elements, o;(O), is compute 
uations formed by applying Eq. (17) to 3-dime 

within the torus. The centers of the vortex elements are located 
mesh cells, and the left-hand side of Eq. (17) ual to the total vorticity of 
the vortex ring at the center of the vortex elem ensures that the numerical 
value of the vorticity at the mesh center is equal to that of the initial vort 
the ring. The mesh is constructed using N,. cross sections of the torus separ 
an angle A6 = 2r~/N,, and N, points within each cross section. The elements 
each cross section of the ring are arranged on N, radial loca.tions. I~itially~ 
ticity of the ring, OS, is aligned with the azimuthal o-direction and is independ 
of 8. The coordinate system which is used to describe the ring is shown in Fig. I 
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FIG. 11. (a) The geometry of the vortex torus, (b) Schematic cross sections of the vortex torus show- 
ing the location of the vortex elements for various meshes used in the computations. 
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Thus, N, equations are solved for the initial vorticity of the elements within a par- 
ticular cross section. The initial vorticity within the core of the ring is take 
third-order Gaussian distribution 

(27) 

where es is the unit vector along the unperturbed ring axis, Y is measure 
center of the vorticity core, as shown in Fig. lla, a = ~/3y(2/3), CJ is th 
deviation of the Gaussian, and y denotes the gamma function. The constant ck is 
chosen so that the normalized circulation of the vortex r’ ’ 2, and Q2, is positive 
so that the ring moves in the positive z-direction in a rig nded reference frame. 

Three different meshes are used to discretize the vorticity of the ring, as shown 
in Fig. lib. Mesh I is a uniform radial mesh; mesh II is a staggered ra esh; 
and mesh III is an equi-spaced radial mesh. In meshes I and II, all the f&i- 

e core have the same number of elements. In mesh I, the elements are 
ial rays, while in mesh II, they are radially staggered. In both cases, 

rice between neighboring elements increases as we move outwards. 
In mesh III, the number of elements increases as we move o 

dial distance between neighboring elements a~~roximatel 
e number of elements in the e-direction for each radial 1s 

such that the self-induced velocity of individual thin tubes were accurately 
according to the analysis in the previous section. 

iMany choices of the mesh and of the core of the vortex elements would satisfy 
Eq. (I 3 ). The locations of the centers of the vortex elements, and the core radius of 

the elements, 6, are chosen to satisfy: (a) the element core radius should be large 
enough to ensure overlap between neighboring elements; (b) the order of 

e of the vorticity of the elements at different radial stations is the same to 
optimize the utilization of the elements; and (c) the total circulation of the ele 
is as close as possible to the circulation of the ring. When it was not p 
satisfy the three conditions simultaneously, a compromise whit 
cement of condition (c) was used. 

Tests for the accuracy of the discretization of the vorticity field were 
for a ring with rr/R = 0.275 for the following cases: (I ) me I with N, = 9, 17, 25, 
and 33; (2) mesh II with N,= 17,25, and 33; and (3) me III with IV,= 19 
and 61, all shown in Fig. 1 Ib. The results of the computa ns are s~mrna~iz~ 
Table I. The accuracy of the discretization is measured in terms OS: 
tion of the computed value of r from the intended value of 2; (2) t 
value of the self-induced velocity; (3) the error in the v 
El = wj, IQ,(r) - %(r, 011 M where A is the cross-s~~ti~~al area of the vortex 
torus; and (4) the predicted most unstable mode .*. The error E, has 
preferred over p as a measure of the discretization accuracy since exact vaiu 
the propagation velocity are not known and most available e ssions are 
asymptotic in the small parameter a/R. In light of t first three 
quantities, the following observations can be made: 
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TABLE I 

Summary of Discretization Results for a Ring with cr/R = 0.275 

Nr N, Nc WR ArjR r B El x 100 n* 

Uniform mesh I 

9 1 120 0.1875 0.1700 2.0033 3.211 3.5047 10 
17 2 120 0.1550 0.1087 1.9993 3.291 3.4472 12 
25 3 120 0.1425 0.0900 2.0089 3.285 2.8073 12 
33 4 120 0.1425 0.0650 1.9988 3.297 3.4559 12 

Staggered mesh II 

17 2 120 
25 3 120 
33 4 140 

0.1550 0.1090 2.0027 3.290 3.4250 12 
0.1512 0.0825 2.0011 3.265 2.1934 12 
0.1250 0.0762 2.0014 3.303 2.3219 

Equi-spaced mesh III 

19 2 120 
31 3 120 
61 4 120 

0.1550 0.1080 2.0007 3.281 3.1814 12 
0.1550 0.0910 1.9992 3.296 0.4120 12 
0.1500 0.0705 1.9999 3.291 0.3480 

(1) To satisfy the conditions for accurate discretization, the core radius of the 
vortex elements, 6, must decrease at a slower rate than the separation between 
elements, h. In each case, the results show that 6 decreased slightly while the 
number of elements was doubled. This is in agreement with the convergence results 
of Beale and Majda [12, 131; 

(2) The computed values of the self-propagation velocity, v, are within less 
than 0.5 % variation for all cases. This is despite the larger error in the vorticity 
discretization, E,. A similar trend is shown in the values of r’. The fact that both 
p and r are integrals, or averages, of the vorticity field explains why the error 
diminishes. 

(3) E, decreases substantially when an equi-distance mesh, which guarantees 
the maximum overlap among the vortex elements at the outer radial stations, is 
used. Note that when using mesh I with N, = 25 and 33 and mesh II with N, = 33, 
it was not possible to satisfy condition (a) at the outermost radial location of the 
elements, which resulted in a non-diminishing El. Using almost the same number 
of elements in mesh III resulted in an order of magnitude drop in the error. 

IV.2. Stability of a Vortex Torus 

To investigate the effects of the discretization parameters on the evolution of the 
instability of the ring, the torus with o/R = 0.275 was initially perturbed by fitting 
n sine waves with an amplitude E/R = 0.02 along the perimeter. The number of cross 
sections along the o-direction was chosen so that at least 10 elements were used to 
lit a single sine wave. The integration time step At = 0.10, and the computations 
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were carried for 1000 time steps. To obtain an accurate measure for the evol~t~~~ 
of the perturbation around the torus, the computed energy spectrum of the ring was 
examined. The energy spectrum was evaluated by computing t e discrete Fourier 
transform of the energy calculated at 200 points evenly distributed along a circle of 
radius p = R, located at z = z,, z, being the average streamwise location of the 
vortex elements. In the following section, we will investigate the growth of the 
perturbation in the physical plane. 

Figure 12 shows the evolution of the amplitude of the excited wave~~rn~e~s 
n = 7,8,9,10,11, and 12 using mesh I with N, = 1 and N, = 9. At n = 7 an 
amplitudes oscillate without growth, indicating that the ring is 
waves. For n = 9 and 10, the amplitudes grow exponentially at t 
t < 30, and continue to grow at a more moderate rate at later times. The rate of 
growth is higher for for 
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Frc. 13. Natural logarithm of the amplitude of the excited modes for the ring of Fig. 13 using 
mesh I and N, = 17. 

and 33 agree with those obtained using the other discretization parameters at early 
time, they diverge at later times. 

Comparison of the evolution of the instability, when computed using the eight 
discretization meshes, reveal the following: 

(1) At least two radial locations within the core are needed to ensure 
accurate prediction of the unstable mode in vortex rings. When we used mesh I 
with N, = 1, the resolution of the vorticity field could not capture the correct 
wavenumber of the unstable mode. This is expected since the instability observed 
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TIME 

FIG. 14. Evolution of the natural logarithm of the most unstable mode n* = 12 for the ring of 
Fig. 12 using: mesh I with N,= 9, 17, 25, and 33; mesh II with N,= 17 and 25; and mesh III with 
N, = 19 and 37. 
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ere, according to the results of the linear theory, corresponds to the second radial 
e which should be properly represented. A single radial station within the core 

is not sufficient for proper resolution of this mode. Note that using 
locations did not affect the value of n*. 

(2) FQ~ accurate simulations using the vortex method, overkap betw 
elements must be maintained at all times. When this condition is not observ 
vergence of the results may not be achieved. Note that the loss of overlap is 
sible for large error in the estimate of the initial amplitude of the perturbaL 
mesh I with iV,=25 and 33, as seen from Fig. 14. 

(3) The prediction of the unstable mode and the evohttio 
are i~de~e~de~t of the initial location and number of vortex ele 
overlap between neighboring elements is ensured, (b) at least tw 
witb~~ the core are present and (c) a sufficiently small time step dl is used. 

These conclusions were further confirmed by inspecting the long time energy 
spectrum for the five cases for which conditions (a)-(c) , mesh H with Iv, = 87, 
mesh II with N, = 17 and 25, and mesh III with N, = 19 and 37. Fi 
the behavior of the unstable wavenumber, IZ* = 12, and its first har 
for the five cases. The response of the unstable mode and that of it 
in close agreement for the five cases. For cases whe 
the generation of the first harmonic was not observ 

To derive the relationship between v and pz 
rings with a/R = 0.325, 0.375, and 0.45. The c 

-2.0 I / 

0 20 40 60 80 100 

TIME 

FIG. 15. Natural logarithm of the amplitude of the unstable mode, n*, and its first har- 
monic, n = 2n*, for the ring of Fig. 12 using mesh I with N, = 17, mesh Ii with hi, = 17 and 25; and 
-mesh III, with N,= 19 and 37. 
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TABLE II 

Summary of the Computed Unstable Wavenumber Using Mesh I 

OlR n 

0.275 
7 
8 
9 
10 
11 
12 
13 

0.325 
6 
I 
8 
9 

10 
11 

0.375 
5 
6 
7 
8 
9 

10 

0.45 
4 
5 
6 
I 
8 
9 

NY=9 N,= 17 

Stable 
Stable 
Unstable 
Unstable” 
Stable 
Stable 

Stable 
Stable 
Unstable 
Unstable” 
Stable 

Stable 
Neutral 
Unstable” 
Stable 
Stable 

Stable 
Unstable 
Unstable” 
Stable 

Stable 
Unstable 
Unstable” 
Stable 
Stable 

Stable 
Unstable 
Unstable” 
Stable 

Stable 
Unstable 
Unstable” 
Stable 

Stable 
Unstable 
Unstable” 
Stable 
Stable 

a Indicates the most unstable. 

8= 3.13,2.98, and 2.79. The tori were discretized on mesh I using N, = 9 and 17, 
and were perturbed as for the a/R = 0.275 case. Results are summarized in Table II, 
and plotted on Fig. 16. These results indicate that the relationship between the 
unstable wavenumber and normalized self-induced velocity derived by using a 
single radial station within the core is not accurate. The computed results obtained 
by using two or more radial stations are in excellent agreement with the results of 
the linear theory and in very good agreement with experimental data. It is interest- 
ing to note that using two radial locations for vorticity discretization, we find two 
amplified wavenumbers. This indicates that the ring is unstable to a narrow 
frequency band and that, in reality, both wavenumbers may grow simultaneously 
131. 
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FIG. 16. The wavenumber of the most unstable mode, n*, computed using mesh I with IV,= 9 
(diamond) and N, = 17 (*), plotted against the normalized self-induced velocity, v, compared with the 
analytical results of Widnall et al. [2] for a ring with constant (square) and quadratic (+ ) vorticity 
distributions. The results of Fig. 9 are also included. 

bV.3. Shape of Instability 

The shape of a vortex ring undergoing deformation due to the growth of 
azimuthal instability is now analyzed using the results of numerical. s~rn~~at~o~ 
based on the vortex torus model. We study the evolution of a ring pertube 
most unstable wavenumber and compare the results with observations mad 
hnear stability theory, starting with analysis of the evolution of the flow 
ring perturbed at a stable wavenumber. 

Figure 17 depicts two views of the vortex torus with o/R = 0.275 when perturbe 
stable wavenumber n= 9, at time t = 10,40, IO, 100, comput 
N, = 17. These views are generated by projecting the fines 
x elements initially aligned aong vortex lines on the planes nor 

to the direction of propagation of the ring. The figure shows that the vorticity core 
experiences a mild deformation due to the motion of individual vortex e~~rn~~ts 
around the original axis of the torus. However, the amplitude of the ~~rt~rba~~o~ 
remains bounded while the waves rotate around the axis of the ring, as seen by the 
exchange of peaks and valleys at the same azimuthal location around the 
frequency of rotation of the waves is the same as that predicted by 
in Fig. 13, The number of vortex elements used to discretize the vor 
of the ring remains constant during the entire run, N= 2840, indicatin 
corresponding vorticity stretch is negligibly small. 

Figure 18 shows perspective views of the same vortex torus when pe 
the most unstable wavenumber, n* = 12, depicted at time t = 30, 60, 9 
the initial stages, and within the linear range of the instability, the 
rotate around the axis on the ring while their amplitudes grow at an ex~o~~~t~~~ 
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FIG. 18. Perspective views of the vortex torus of Fig. 17 excited at n* = 12 depicted at t= 30, 60, 90, 
and 120, taken from the point of view of an observer standing ahead of the ring and looking 
angle fl = 60” with respect to the direction of propagation. The ring is represented by ali vortex tubes 

a: an 

used in the computations, connected in the direction of vorticity, and the ring is propagating in the 
upward direction. 
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rate. The growth of the perturbation as standing waves has been predicted by the 
linear stability theory. The perturbation grows in the radial and streamwise direc- 
tions causing substantial non uniform deformation around the ring. At t > 30, while 
the rate of growth subsides due to the onset of non-linear dynamics, the deforma- 
tion of the ring continues to reshape the vorticity structure. The figure shows that 
the outer sections of the standing waves continue to extend radially outwards while 
they are being tilted in the direction opposite to the direction of propagation of the 
ring. On the other hand, the inner parts of the waves extend inwards towards the 
center of the ring while they are being tilted opposite to the direction of propaga- 
tion of the ring. During this stage, the entire cross section of the core moves almost 
in phase. This process leads to a redistribution of the ring vorticity into a number 
of sectors equal to the number of waves. 

At later stages, t > 90, the core experiences more deformation due to the motion 
of different radial locations at different speeds. The figure shows that the inner and 
outer radii of the ring move in anti-phase, leading to deformations at scales smaller 
than the scale of the initial perturbation. The formation of small scales can be 
examined by looking at the long time energy spectrum. Figure 19 displays the time 
change of the amplitude of the perturbation wavenumber, n*, and of its higher har- 
monics, 2n* and 3n*, showing how higher harmonics are energized after the satura- 
tion of the fundamental frequency. It is interesting to observe that the generation 
of small scales takes the form of an energy cascade in which successively excited 
wavenumbers are higher harmonics of the most unstable wavenumber. This is also 
associated with severe stretching of the vortex lines, as indicated by the growth of 
the number of vortex elements from N= 2040 at t = 0 to N = 6936 at t = 140, where 
we had to terminate the computations. 

Three perspective views of the vortex ring at t = 140 are shown in Fig. 20. The 

0 20 40 60 80 100 120 140 

TIME 

FIG. 19. Natural logarithm of the amplitude of perturbation wavenumber, n*, and of its higher 
harmonics, 2n* and 3n* for the ring of Fig. 18. 
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FIG. 20. Three perspective views of the vortex ring of Fig. 18 2t t = 140. The plots are generated as 
in Fig. 18 with p = O”, 60”, and 90”. 



104 KNIO AND GHONIEM 

figure shows that vortex lines at the outside radii elongate along the negative 
z-direction reaching a maximum in the direction opposite to that of propagation of 
the ring and then fold forwards towards its center. On the other hand, vortex lines 
at the inside radii of the ring stretch along the positive z-direction reaching a maxi- 
mum in the direction of propagation of the ring and then fold backwards towards 
its center. The mechanism of vortex line folding maintains the ring coherent and is 
responsible for the formation of the hairpin vortices. The shape of the ring at the 
later stages is in agreement with experimental observation [8,9]. This suggests that 
these hairpin vortex structures, which were also observed in the late stages of 
development of the thin tube model, represent fundamental forms for vortex lines 
in turbulent flows. 

V. DISCUSSION AND CONCLUSIONS 

In this work, a 3-dimensional vortex method for the solution of the unsteady, 
inviscid, incompressible flow equations is constructed, and its convergence and 
accuracy are investigated. The method is applied to the study of the evolution of 
unstable vortex rings in an unbounded fluid. Two models for the vorticity core of 
the ring are introduced, a thin tube model where the vorticity of the core is concen- 
trated into a single vortex element, and a vortex torus model where several elements 
are used to represent the core cross section. Computed results for both models are 
compared to analytical predictions of the number of waves of the unstable mode 
and the properties of the corresponding eigenfunction of the linear stability 
problem. 

The following numerical parameters have been shown to play an important role 
in the accuracy and convergence of vortex methods: the smoothing core, f; the ratio 
of core radius to seperation between neighboring elements, 6/h; the numerical 
integration procedure; the time step At; and the vorticity initialization procedure. In 
our numerical study of the scheme, the approach we followed was to view the 
3-dimensional vortex method as an extension of its 2-dimensional counterpart. In 
doing that, and due to the expensive nature of the computations, we have implicitly 
taken advantage of results which had already been established in the 2-dimensional 
case and have not experimented with those areas where analytical analysis is more 
revealing. In particular, the effect of the smoothing function, which has been shown 
to control the spatial convergence order of scheme [lS], was not studied. A single 
second-order time integration scheme was adopted for all the computations and we 
were content to verify that the results were insensitive to decreasing the time step. 

This study has revealed two crucial ingredients in the application of 
3-dimensional vortex methods, namely, the procedure of discretization of the initial 
vorticity field and the method of maintaining overlap between neighboring 
elements. Accurate discretization of the vorticity field into overlapping elements is 
found necessary for convergence of the results. The accuracy of the discretization, 
which is shown to depend on the mesh and the core radius of the elements, can be 



NUMERICAL STUDY OF 3D VORTEX METHOD 105 

easured by the deviation from the target profile. The initialization procedure has 
to be further constrained by the condition that ~eigbbQri~g elements ust have 
~verla~~i~g cores. When this last condition was not satisfie results were foun 
diverge rapidly. Best results were obtained when the initial esh is chosen so 
the distance between neighboring elements is almost the same in all d~rect~~~s. 
Finally, it is also shown that maintaining overlap between ne~gbbor~~g elements at 
all times is necessary. This is achieved through the redistribution of the vorticity 
field into a larger number of elements when the strain field causes separation 
between ~eigbboring elements to exceed the core radius. An analogos situation is 
e~~o~~tered in the 2-dimensional case 11171, where ove an be lost due 6 
strain normal to the direction of the local vorticity vector. ave not experience 
such a problem in the case Lof the vortex ring since the instabitity did not cause 

tantial growth of the core itself. 
esults of the thin tube model are found to be in good agreement with the results 

of the corresponding linear theory. In this model, the dynamics of 
are neglected, and the instability of the vortex ring is s~~r~o~s~y p 
model is in poor agreement with experimental data, however, th 
unstable vortex rings is qualitatively obtained. The study shows that the u.nstable 

ve number corresponds to a non-rotating mode and that the unstable wavered- 
r increases with the normalized self-induced velocity of the ring. Resuhs for the 

vortex torus model are in excellent agreement with theo results on the 
stabihty of real vortex rings and in good agreement with ex 

est that the numerical constraints discussed above hav 
the initial mesh where the vorticity is discretize 
sits of the problem to be properly r 
o perturbations lying in a small ove 

the critical wavenumber. 
The evolution of the instability beyond the linear range indicates that the o 

of the t~rb~~~~atio~ of the core of vorticity is associated with harmonics of 
unstable mode, excited in succession in the form of a discrete 
ring is substantially deformed around the azimuth and 
generated at the edges of the vorticity core. While a quahtati 
was obtained by using the thin tube model, the shape of the vortex torus is more 
realistic and in much better agreement with ex~er~rn~~ta~ observation. 
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